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ABSTRACT
In this paper, a novel global optimization based approach is pro-
posed for video completion whose target is to restore the spatial-
temporal missing regions of a video in a visually plausible way.
Our algorithm consists of two stages: motion field completion and
color completion via global optimization. First, local motions within
the missing parts are completed patch-by-patch greedily using pre-
computed available motions in the video. Then the missing regions
are filled by sampling patches from available parts of the video. We
formulate the video completion as a global energy minimization
problem by Markov random fields (MRFs). Based on the com-
pleted motion field of the video, a well-defined energy function
involving both spatial and temporal coherence relationship is con-
structed. A coarse-to-fine Belief Propagation (BP) is proposed to
solve the optimization problem. Experimental results have demon-
strated the good performance of our algorithm.

Categories and Subject Descriptors
I.4.9 [IMAGE PROCESSING AND COMPUTER VISION]: Ap-
plications

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Image and video completion, also known as image and video in-

painting, are of great importance in many multimedia applications
such as photo and movie post-production. Their goal is to auto-
matically reconstruct missing regions in an image/video in a non-
detectable form. A number of methods have been proposed to deal
with the problem of image completion [2], [3], [6], [8], [13]. A
partial differential equation (PDE) based algorithm is presented in
[2]. Inspired by the texture synthesis technique in [4], an exemplar-
based technique [3] is proposed to repair the missing regions via
patch copying. The global optimization based algorithms [6], [8],
[13] can overcome the shortcoming of the greedy patch copying
scheme in [3].
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Compared with image completion, video completion is more
challenging in two aspects. First, it is more important to enforce
temporal coherency than spatial coherency in the completion pro-
cess since human visual system is more sensitive to motion distor-
tion. Simply treating video as a set of independent images and then
applying an image completion method to them are not advisable.
Second, video completion contains much more data and thus needs
more efficient algorithms.

One of the first efforts for video completion is made in [1], which
is a PDE-based approach and handles the video frame by frame. It
works well in small structured holes, but fails to complete large
holes in a video sequence and does not utilize the temporal infor-
mation from the video. Many segmentation based or layer extrac-
tion based algorithms are developed recently [7], [15], [10], [9]. In
addition to being restricted to periodic motion, these methods have
at least one of the following limitations: large computational com-
plexity, interaction requirement, and inaccurate layer extraction.

Extending the exemplar-based approach to video completion, the
algorithm in [14] treats video completion as a global optimization
problem. However, the algorithm also relies on the assumption of
periodic motion and is computationally inefficient due to the pixel-
by-pixel filling process and exhaustive search for candidates.

A newly published algorithm in [12] restores local motion in the
holes of the video by sampling spatial-temporal motion patches,
instead of directly using the color copy-and-paste scheme. With
the completed motion volume, color is propagated into the holes
to complete the video. As discussed in [12], the algorithm is more
sensitive to noise than directly using color sampling and does not
work well for the completion of videos with large motions. More-
over, the results of this algorithm have blurring effects due to the
weighted average scheme in color propagation.

In this paper, we propose a motion guided spatial-temporal global
video completion algorithm to combine motion field completion
and global exemplar-based color completion. First, the motion in
the data missing regions is completed patch-by-patch using the mo-
tion pre-computed in the available regions. Then based on the com-
pleted motion, exemplar-based color completion is formulated as a
discrete global optimization problem with a well defined objective
function, which enforces spatial and temporal consistency under
the Markov random field (MRF) model. A coarse-to-fine belief
propagation (BP) is proposed to deal with the intolerable compu-
tational cost caused by the large number of label candidates in the
optimization.

Our algorithm preserves the temporal consistency information
based on the completed motion field, and globally optimizes the
color completion process. Moreover, our algorithm is not restricted
to videos containing periodic motion only and can handle a wide
variety of videos.
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Figure 1: Illustration of the spatial and temporal terms. The
dots indicate the sampled pixels which correspond to the ver-
tices in the graph. Regions 1, 2, 3, and 4 are overlapping
parts for the calculation of E1(x

t
i), E2(x

t
i, x

t
j), E3(x

t
i), and

E4(x
t
i, x

t+1
j ), respectively. The patch centered at pt+1 (the

cross ) is copied from xt
i .

2. MOTION GUIDED SPATIAL-TEMPORAL
GLOBAL OPTIMIZATION

We formulate the video completion problem as a labeling prob-
lem modeled by discrete Markov Random Fields (MRFs). Let
f = {f t}T

t=1 be the input video of T frames with the region
Π = {Πt}T

t=1, where Πt is the region of f t. Suppose that Φ =
{Φt}T

t=1 is the source region and Ω = {Ωt}T
t=1 is the target region

(data missing region). Then we have Φ + Ω = {Φt + Ωt}T
t=1 =

{Πt}T
t=1 = Π.

Firstly, we sparsely sample each frame with a horizontal spacing
hs and vertical spacing vs. Then we can obtain sampled pixels
P = {{pt

i}Nt

i=1}T
t=1 in the target region, where N t is the number

of sampled pixels in the target region of the tth frame. The process
of video completion is to fill the target region by pasting some w×h
patches taken from the source region to the locations centered at the
positions in P .

We construct an undirected weighted graph G = (V, E), where
the node set V = {{vt

i}Nt

i=1}T
t=1 contains all the pixels in P , and

E is the set of edges connecting each node to nodes in its neigh-
borhood system. A 4-neighborhood system is used to enforce the
spatial consistency constraint in the same frame, while some nodes
in sequential frames, called temporal neighbors, are included in
our neighborhood system to enforce the temporal consistency con-
straint. The detail of temporal neighbors is described in Section
2.2.2.

Let L = {lk}K
k=1 be the set of label candidates containing all the

w× h patches taken from the source region. Our labeling problem
is to find the best label configuration X = {{xt

i}Nt

i=1}T
t=1 such that

an energy function is minimized, where xt
i ∈ L and xt

i = lk rep-
resents that the label (patch) for node vt

i is lk. In our approach, the
best label configuration is estimated by minimizing the following
energy function:

E(X) = Es(X) + αEt(X), (1)

where Es(X), called spatial term, enforces the spatial consistency
constraint, Et(X), called temporal term, enforces the temporal
consistency constraint, and α is a positive constant to balance these
two terms. Fig. 1 illustrates the spatial and temporal terms.

2.1 The Spatial Term
The spatial term implies that the overlapping parts of patches

should have consistent texture and structure information in the patch
pasting process. Based on the MRF model, it is defined as:

Es(X) =
∑

vt
i

E1(x
t
i) +

∑

(vt
i ,vt

j)∈Es

E2(x
t
i, x

t
j), (2)

where Es is the spatial 4-neighborhood system, E1(x
t
i) is the cost

for label xt
i , and E2(x

t
i, x

t
j) is the consistency cost for label pair

(xt
i, x

t
j).

Similar to [3], the confidence map is also used in our algorithm to
represent the importance of nodes in the filling process. In the map,
the pixels in the target region closer to the source region in each
frame have larger confidence values. With the confidence map, the
cost for label xt

i is defined as:

E1(x
t
i) = Ct

i · d(xt
i, Φ

t), (3)

where Ct
i is the confidence value for node vt

i and d(xt
i, Φ

t) con-
strains the synthesized patch xt

i to match well with the source re-
gion which overlaps with the node vt

i . d(xt
i, Φ

t) is calculated as
the sum of the squared differences (SSD) of the pixel colors in the
overlapping part between xt

i and Φt (e.g., region 1 surrounded by
the red dashed curve in Fig. 1). When xt

i and Φt do not overlap,
E1(x

t
i) = 0.

Since structure (e.g., lines, curves) continuity is important for
human perception and texture reflects the details of an image, we
incorporate both structure and texture in the completion process.
The consistency cost E2(x

t
i, x

t
j) in (2) is thus defined as

E2(x
t
i, x

t
j) =

[
Ct

i + Ct
j

2

] [
λ1E

′
2(x

t
i, x

t
j) + λ2E

′′
2 (xt

i, x
t
j)

]
,

(4)

where Ct
i and Ct

j are the confidence values of nodes vt
i and vt

j ,
respectively, E′

2(x
t
i, x

t
j) is used to enforce consistency for texture

propagation, E′′
2 (xt

i, x
t
j) is for structure propagation, and λ1 and

λ2 are two factors to balance E1, E′
2, and E′′

2 .
In our algorithm, E′

2(x
t
i, x

t
j) is computed by

E′
2(x

t
i, x

t
j) = d(xt

i, x
t
j), (5)

where d(xt
i, x

t
j) is the SSD in the overlapping part between the

patches centered at nodes vt
i and vt

j (e.g., region 2 surrounded by
the red solid curve in Fig. 1). E′′

2 (xt
i, x

t
j) is computed by

E′′
2 (xt

i, x
t
j) = d2

gh(xt
i, x

t
j) + d2

gv(xt
i, x

t
j), (6)

where dgh(xt
i, x

t
j) and dgv(xt

i, x
t
j) are the gradient differences be-

tween xt
i and xt

j in the image horizontal and vertical directions,
respectively. The gradient of a patch is denoted as the maximum
gradient of the pixels in the patch, which describes the structure
of the patch. The constraint of gradient consistency propagates the
structure information.

2.2 The Temporal Term
The temporal term constrains that two corresponding patches in

two sequential frames should have consistent colors. In our al-
gorithm, the correspondence is found via local motion estimation.
The hierarchical Lucas-Kanade algorithm [11] is used for motion
estimation.

If dense motion is estimated, the correspondences for all patches
in a video without missing pixels can be constructed. In our prob-
lem, however, there are many data missing regions in the input
video, and thus optical flows cannot estimate the motions for the
pixels in these regions. To obtain a completed motion map, we first
calculate the motions for all the pixels in the source region. Then
copy-and-paste scheme is used to carry out the motion completion.
The details are described as follows.

2.2.1 Motion Completion
In our approach, a copy-and-paste process, i.e., copying the best

motion patch from the source region and pasting it to the target
region, fills in the motion in the target region patch by patch.

Before defining the criteria for choosing the best source patch for
a target region, the motion difference measurement is introduced.
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Figure 2: Illustration of the temporal neighborhood system. pt
i

is a sampled pixel in frame t with its corresponding graph ver-
tex vt

i . The cross in frame t+1 is the corresponding position of
pt

i based on the motion estimated. Then vertices corresponding
to the four nearest sampled pixels in frame t+1 are the tempo-
ral neighbors of vt

i (connected with vt
i by red dashed lines).

Suppose that the motion vector of pixel q in frame t is (ut
q, v

t
q)

T .
If we regard the 2D motion as a 3D vector in the spatio-temporal
domain by padding the element t, the 3D vector is defined as mt

q =

(ut
q, v

t
q, t)

T . The difference between two motion vectors m and m′

is defined as the angular difference [12]:

dm(m,m′) = 1− m ·m′

|m||m′| = 1− cos θ, (7)

where θ is the angle between the two motion vectors m and m′.
For a source motion patch As and a target motion patch At (As

and At are 3D in the spatio-temporal domain), the difference mea-
surement between them is defined as:

dmp(As, At) =
1

|Qs|
∑

qt∈Qs

dm(mts
qs

,mtt
qt

), (8)

where Qs is the set of points in At belonging to the source region,
|Qs| is the number of pixels in Qs, qs and qt are two corresponding
pixels in As and At respectively, and ts and tt are the frames in
which As and At are respectively. Then for At the best source
patch Âs is chosen by minimizing (8):

Âs = argmin
As

dmp(As, At). (9)

2.2.2 A Temporal Energy Function
Before defining the temporal term, the temporal neighborhood is

introduced first. For a sampled pixel pt
i whose corresponding graph

vertex is vt
i , if its motion is known, then we can find its correspond-

ing point pt+1 in the next frame. We call the set of the four vertices
in frame t + 1 corresponding to the four sampled vertices nearest
to pt+1 the temporal neighborhood of vt

i (see Fig. 2). If vt+1
j is a

temporal neighbor of vt
i , then we denote them as (vt

i , v
t+1
j ) ∈ Et.

The definition of the temporal term is similar to the spatial term,
which is expressed as the sum of two parts:

Et(X) =
∑

vt
i

E3(x
t
i) +

∑

(vt
i ,vt+1

j )∈Et

E4(x
t
i, x

t+1
j ), (10)

where Et is the temporal neighborhood system, E3(x
t
i) represents

the temporal inconsistency between xt
i and its corresponding source

region in frame t+1, and E4(x
t
i, x

t+1
j ) represents the temporal in-

consistency between xt
i and xt+1

j .
The definitions of E3(x

t
i) and E4(x

t
i, x

t+1
j ) are similar to those

of E1(x
t
i) and E2(x

t
i, x

t
j), respectively, but compared with E1(x

t
i)

and E2(x
t
i, x

t
j), there is no confidence and structure information in

E3(x
t
i) and E4(x

t
i, x

t+1
j ). They are defined as:

E3(x
t
i) = d(xt

i, Φ
t+1), E4(x

t
i, x

t+1
j ) = d(xt

i, x
t+1
j ). (11)

As in the spatial term, here d is the SSD value in the overlapping
region of the two parts. Suppose that the corresponding pixel of pt

i

in frame t + 1 is pt+1. To calculate d(xt
i, Φ

t+1) and d(xt
i, x

t+1
j ),

the first step is to put the center of the patch xt
i at pt+1. Then

d(xt
i, Φ

t+1) is the SSD value in the overlapping region between
the patch and Φt+1 (e.g., region 3 surrounded by the purple dashed
curve in Fig. 1), and d(xt

i, x
t+1
j ) is the SSD value in the overlap-

ping region between the patch and xt+1
j (e.g., region 4 surrounded

by the purple solid curve in Fig. 1).

2.3 Optimization by BP
The problem of minimizing (1) is NP-hard. BP can find a local

optimum for such an MRF energy function. The max-product and
sum-product are two typical BP algorithms [5]. In this paper, the
max-product algorithm is used since it is less sensitive to numerical
inaccuracy.

The max-product BP works iteratively by passing messages along
the graph. For a graph with N nodes and K label candidates, the
running time for T iterations is O(TNK2). In our video com-
pletion approach, the main problem with such a standard BP al-
gorithm is that the number of label candidates K is too large to
be used in practice. In this paper, we use a coarse-to-fine scheme
to greatly reduce the computational time. The main idea of this
scheme is to perform BP R times with Kr label candidates each
time, r = 1, ..., R, instead of running BP once with K candidates,
where Kr is much smaller than K.

For simplicity, we take a two-layer pyramid as an example to ex-
plain the scheme. Let K1 and K2 be the numbers of candidates
in the first and the second BP executions respectively. We first
use the k-means algorithm to classify all the patches in L into K1

clusters, denoted as S1, S2, ..., SK1 , i.e., L = {S1, S2, ..., SK1}.
The first running of BP takes the K1 cluster centers as the label
candidates L1 = {c1, c2, ..., cK1} to find the best label configu-
ration X1 = {x1

1, x
1
2, ..., x

1
N} that minimizes the objective energy

function, where x1
i ∈ L1, 1 ≤ i ≤ N . Then we perform BP

again. Suppose that after the first BP, the best label for node vi is
x1

i = ck1 . In the second round BP, the new label candidates for
node vi are all the elements1 belonging to the cluster with center
ck1 . Using such different label candidate sets for different nodes,
the second BP runs to find the best label configuration.

Obviously, such a coarse-to-fine BP scheme leads to a result dif-
ferent from that obtained with the BP running once. However, our
experiments show that this scheme can achieve satisfactory results.
The most important benefit of this scheme is that it can make our
algorithm practical. This scheme can also be used to speed up some
other MRF based applications in computer vision and graphics.

3. EXPERIMENTS
In our experiments, we validate our algorithm on various videos

representing different interesting and challenging cases to demon-
strate its effectiveness. Due to the space limitation, we only show
a few selected results from four representative videos, 120-frame
“performance” (180 × 240) [12], 88-frame “beach” (80 × 170)
[14], 40-frame “running” (240 × 320) [9], and 19-frame “car”
(240 × 320) [9]. For all our experiments, the parameters in our
algorithm are chosen as λ1 = 1, λ2 = 1.5, and α = 5. The num-
ber of levels R in the multi-level BP is chosen as 2 or 3, depending
on the size of a video.

Fig. 3 shows the results for the video “performance”. The first
row gives 4 original frames. We want to remove the walking spec-
1To limit the maximum label candidate number, if the number is
larger than K2, K2 candidates are randomly selected.
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Figure 3: Some results on the “performance” video. The three
rows show the original frames, the manually removed regions,
and the video completion results by our algorithm, respectively.

Figure 4: Some results on the “beach” and “running” videos.

tator. The second row shows the manually removed regions roughly
covering the spectator. The last row displays the completion results
by our algorithm. Fig. 4 and Fig. 5 show the other results, without
the manually removed regions given due to the space limitation.

As shown in Fig. 3, the spectator takes a large space in each
frame, and non-periodic motion happens in this video. The ap-
proach in [9], therefore, cannot handle this video completion well
due to its periodic motion constraint and the large data missing.
Another recent algorithm [12] leads to serious blurring results for
this video, as stated in [12], because of its simple weighted average
scheme in color propagation. However, our algorithm generates
promising results on this challenging case. In the “running” video,
the camera taking the video is also moving. Our algorithm can fill
in the holes well. Another challenging case in video completion
is to complete the regions where the sizes of the objects change.
Fig. 5 is such an example where the car moves closer to the cam-
era. Our algorithm is still successful to complete the removed sign
post.

From the experimental results, we can see that our algorithm can
handle a variety of video completion tasks with different situations,
such as dynamic foreground and background, camera motion, ob-
ject scale changing, and large data missing. Besides, there is no
periodic motion restriction imposed on our algorithm.

4. CONCLUSION
In this paper, a novel video completion algorithm has been pro-

posed by combining motion completion and global exemplar-based
color completion. For a video with holes, the motion field in the
holes is filled locally first. Based on the completed motion field,
color is restored in a global exemplar-based scheme by minimizing
an MRF energy function. The proposed objective function enforces
both spatial and temporal consistency constraints in the color com-
pletion process. BP is used to solve the minimization problem. To

Figure 5: Some results on the “car” video.

avoid the computational impracticability caused by the large num-
ber of label candidates in BP optimization processing, we utilize a
coarse-to-fine optimization scheme whose essential idea is to carry
out BP multiple times with sharply reduced number of label can-
didates, instead of running BP once with a large number of label
candidates. The experimental results on a variety of videos have
demonstrated the good performance of our approach.
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